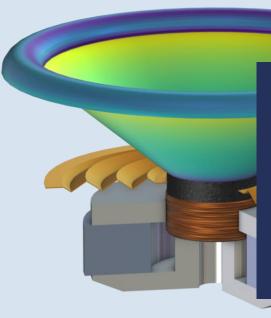
Optimizing Battery Design with Simulation Ross Hubble, COMSOL

COMSOL Multiphysics[®]

One software environment, any engineering field.

A modeling and simulation platform that provides fully coupled multiphysics and single-physics modeling capabilities.

Single Physics


Model phenomena and processes in different engineering and physics fields in one integrated environment with the same principal workflow for all areas.

Add one physics phenomenon at a time and couple when you want.

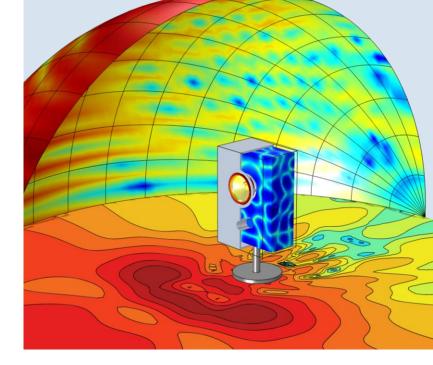
Multiphysics

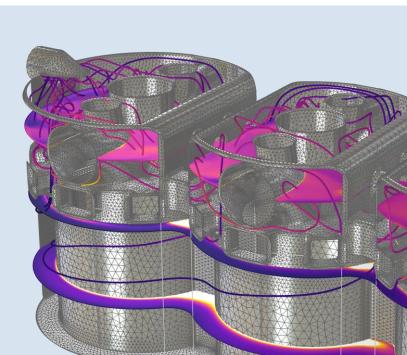
Couple two or more physics phenomena that affect each other.

There are no limitations for which and how many phenomena are coupled.

COMSOL Multiphysics[®]

A powerful modeling and simulation platform.


- 35 add-on modules with dedicated user interfaces and tools for modeling and simulation in electromagnetics, fluid flow, heat transfer, structural mechanics, acoustics, and chemical engineering
- 14 interfacing products to connect simulations with spreadsheet, technical computing, CAD, and ECAD
- Based on finite element, boundary element, discontinuous Galerkin, method of lines, and other numerical methods
- Solid, gas, and liquid properties are available in comprehensive material libraries in the platform product and addon products


APPLICATIONS

Build apps with the Application Builder. Compile apps into standalone executable files with COMSOL Compiler[™]. Host and administer apps with COMSOL Server[™].

MANAGEMENT

Centrally administer and collaborate on models and apps in the Model Manager and Model Manager server.

Battery Design in COMSOL Multiphysics[®]

Battery Design Module

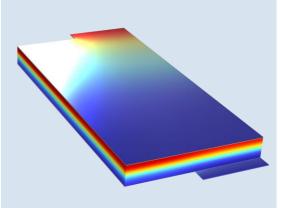
An overview of the functionality for modeling different battery chemistries at different scales and for different purposes.

Cell Models

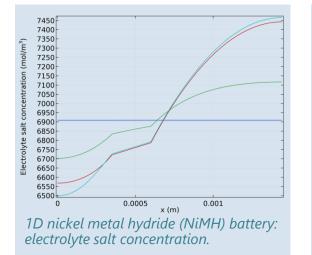
- Performance and design
- Capacity fade and aging
- Different levels of fidelity

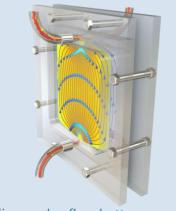
Pack Models

- Cylindrical cells
- Pouch cells
- For performance and thermal management

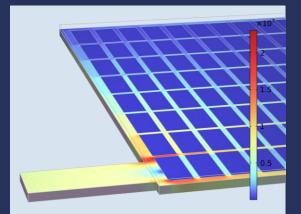

Thermal Management

- Heat transfer mechanisms
- Electrochemical heat sources
- Short circuits and thermal runaway

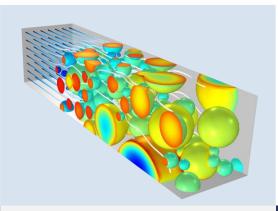

Study Types


- Time dependent
- Cyclic voltammetry, EIS, cycling
- Parameter estimation

The Battery Design Module: Chemistries



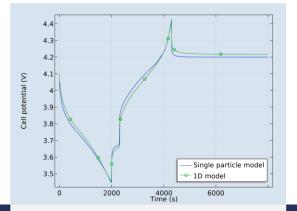
Lithium-ion (Li-ion) battery: 3D Newman model of a pouch cell.


Vanadium redox flow battery: flow field in free and porous media.

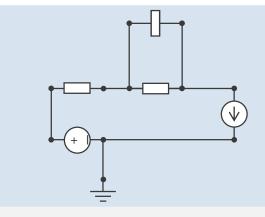
Lead–acid battery: collector current density.

- Predefined electrochemistry for all major battery chemistries
- Nernst–Planck equations and kinetics for any chemistry, porous or solid electrodes
- Time-dependent, including transient effects, and physics-based EIS* studies
- Multiphysics: electrochemical heating, fluid flow, and structural mechanics for expansion and contraction during cycling

Battery Model Types in the Battery Design Module


Heterogeneous Models

- 3D, full geometry, and geometry from tomography
- Transport of all species, kinetics, potentials, etc.
- For fundamental studies of structure, kinetics, mass transport, by-reactions, aging, and more

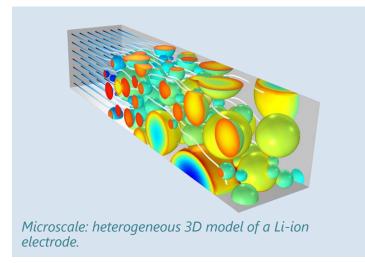

Homogeneous Models

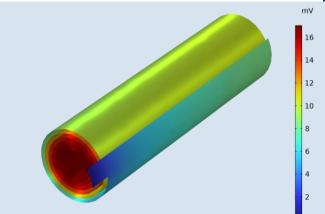
- 1D to 3D, plus 1D particle diffusion of Li or H, e.g., the Newman model
- Homogeneous electrodes
- For fundamental studies but also for design, performance, aging, and more
- 1D also for battery packs

Single Particle Models

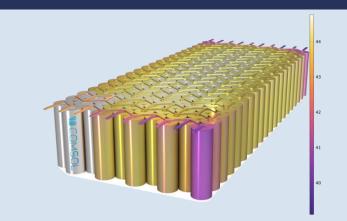
- 0D, plus 1D particle
- Electrode described with a single "particle"
- Kinetics for each electrode
- For battery packs and systems
- Real-time parameter estimation

Equivalent Circuits and Lumped Models


- 0D, plus 1D particle
- Lumped cell parameters
- Computes the SOC* to determine the OCV*
- For battery packs and systems
- Real-time parameter estimation

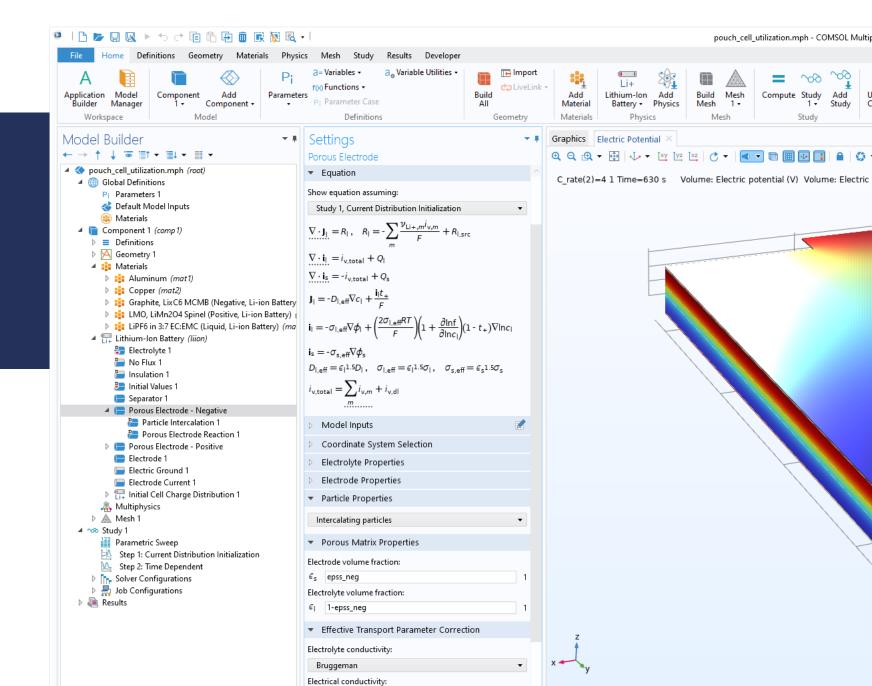

*SOC = state of charge; OCV = open cell voltage

Fast Limited range of validity


Accurate Wide range of validity Expensive to compute

The Battery Design Module: Scales

Cell scale: full 3D Newman model of a cylindrical LP-ion cell.


Pack scale: distributed lumped cell model for each Li-ion cell with 3D heat transfer.

- Modeling from microscale to pack scale
- Full electrochemistry in all scales in 1D, 2D, and 3D
- 1D detailed electrochemistry or 0D lumped cell models for modeling many cells at the pack scale, e.g., for thermal management models
- Time-dependent studies, including transient effects, charge–discharge cycles, and EIS* studies for all scales and chemistries

Battery Chemistries

Newman model for Li-ion cells:

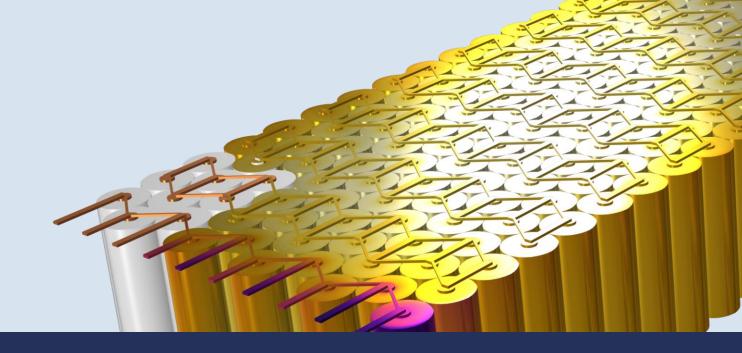
- Models the electrolyte concentration and intercalating species (Li), as well as electrolyte and electrode potentials
- Aging effects, SEI, and effects of expansion and contraction during cycling

Battery Chemistries

Other examples

Lead Acid Nickel Metal Hydride Lithium-Sulfur, Li-S Nickel-Cadmium, NiCd Zink-Silver Oxide, Zn-AgO Zink-Bromine, Zn-Br

🖣 । 🗅 🍃 🛄 🔌 🕨 🔿 टो 🖻 🛍 🗑 🕅 🔍 • ।		znbr_flow_battery.mph - COMSOL Multiphysics
File Home Definitions Geometry Sketch Materials Phy	ysics Mesh Study Results Developer	
A Bolication Model Component Add Parameters	Ariables - a Variable Utilities - Functions - Parameter Case Definitions Defin	d Tertiary Current Add Build Mesh rial Distribution, Nernst-Planck - Physics Mesh 1 -
Model Builder	• Settings •	Graphics Bromine Concentration ×
$\leftarrow \rightarrow \uparrow \downarrow \textcircled{a} \textcircled{t} \checkmark \textcircled{a} \downarrow \checkmark $	Porous Electrode	@ Q @ ▼ ፼ ■ □ ● \$ ▼ 10 🚍
znbr_flow_battery.mph (root)	▼ Equation	~
 Global Definitions Pi Parameters 1 	Show equation assuming:	i_app(3)=40 mA/cm ² Time=0.93183 h
🐟 Default Model Inputs	Study 1, Current Distribution Initialization	0.034 -
 (ii) Materials 4 (1) Component 1 (comp 1) 	$\nabla \cdot \mathbf{J}_{i} + \mathbf{u} \cdot \nabla c_{i} = R_{i,\text{tot}}, R_{i,\text{tot}} = \sum R_{i,m} + R_{\text{dl},i} + \epsilon_{\text{l}}R_{i}$	0.032 -
Definitions	m	
Geometry 1 Materials	$\underbrace{\nabla \cdot \mathbf{i}_{I}}_{\dots \dots =} \varepsilon_{I} F \sum_{j} z_{j} R_{j} + Q_{I} + i_{v,total}$	0.03 -
Tertiary Current Distribution, Nernst-Planck (tcd)		0.028 -
P Electrolyte 1	$\underline{\nabla \cdot \mathbf{i}}_{s} = -\varepsilon_{l}F \sum_{i} z_{i}R_{i} + Q_{s} - i_{v,\text{total}}$	0.026 -
ansulation 1	$\mathbf{J}_{i} = -D_{i,\text{eff}} \nabla c_{i} - z_{i} u_{\text{m},i,\text{eff}} \mathbf{F} c_{i} \nabla \phi_{1}$	
Initial Values 1 Separator 1	$\mathbf{j}_{i} = \mathcal{D}_{i,\text{eff}} \nabla \mathbf{c}_{i} - \mathcal{D}_{i,\text{eff}} \nabla \mathbf{c}_{i}$ $\mathbf{i}_{i} = -\sigma_{i,\text{eff}} \nabla \phi_{i}$	0.024 -
Porous Electrode - Negative	$\mathbf{i}_{1} = \mathbf{\nabla}_{1,\text{eff}} \nabla \boldsymbol{\varphi}_{1}$ $\mathbf{i}_{5} = -\boldsymbol{\sigma}_{5,\text{eff}} \nabla \boldsymbol{\varphi}_{5}$	0.022 -
Porous Electrode - Positive Electric Ground 1	$D_{i,\text{eff}} = \epsilon_1 1.5 D_i$	0.02 –
😑 Electrode Current 1	$\sigma_{\rm l,eff} = \epsilon_{\rm l}^{1.5}\sigma_{\rm l}$	0.018 -
Internal Electrode Surface 1 Inflow 1	$\sigma_{\rm s,eff} = \epsilon_{\rm s} {\rm 1.5} \sigma_{\rm s}$	
😑 Outflow 1	$i_{v,total} = \sum i_{v,m} + i_{v,dl}$	0.016 -
 Initial Values 2 	. <u>m</u>	0.014 -
👗 Multiphysics	> Model Input	0.012 -
▷ ▲ Mesh 1 ▲ ☜ Study 1	Coordinate System Selection	
Parametric Sweep	▷ Convection	0.01 -
Step 1: Current Distribution Initialization Step 2: Time Dependent	▷ Diffusion	0.008 -
Solver Configurations	 Migration in Electric Field 	0.006 -
 A Job Configurations A Results 	Mobility:	
	Nernst-Einstein relation	0.004 -
	$u_{m,i} = \frac{D_i}{BT}$	0.002 -
	Charge number:	o –
	Charge number: Z _{cBr2} 0 1	-0.002 -
		-0.002
	Electrolyte Current Conduction	0 0.005 0.01 0.015
	Electrolyte material:	
	Domain material 🔹 🗐	Messages × Progress Log Probe Table 1 ×


Aging and Thermal Management

Capacity Fade and Aging

- Plating and short circuits
- Gas evolution
- Side reactions and loss of surface area
- Loss of electrolyte
- SEI formation
- Mechanical degradation, e.g., crack formation

Thermal Effects

- Thermal management at the cell, module, and pack scales
- Short-circuit models with subsequent thermal runaway
- Thermal runaway with chemical combustion
- Propagation of thermal runaway in modules and packs

Modeling of Heat Generation and Heat Transfer

Cooling

- Avoids excess SEI (Li-ion) formation and gassing
- Slows down deterioration of materials

Hot Spots

- Lead to accelerated aging
- Increase risk for thermal runaway

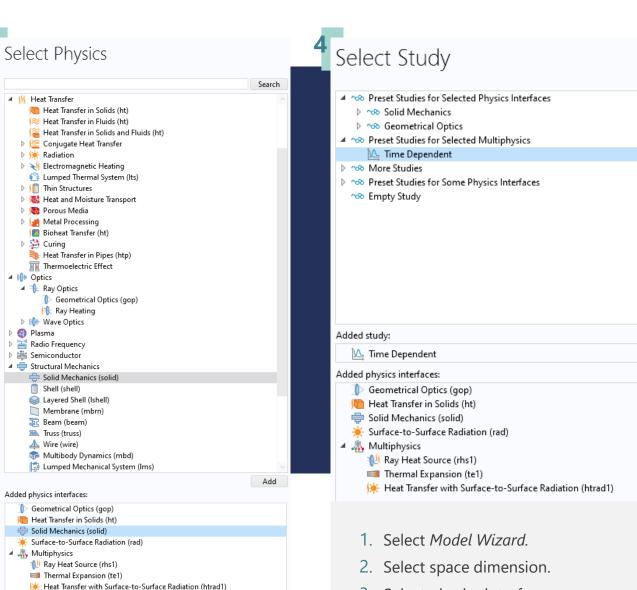
Startup from Cold

- Low-temperature operation may result in lithium plating
- Low temperature yields low electrolyte conductivity and poor performance

Worst Case

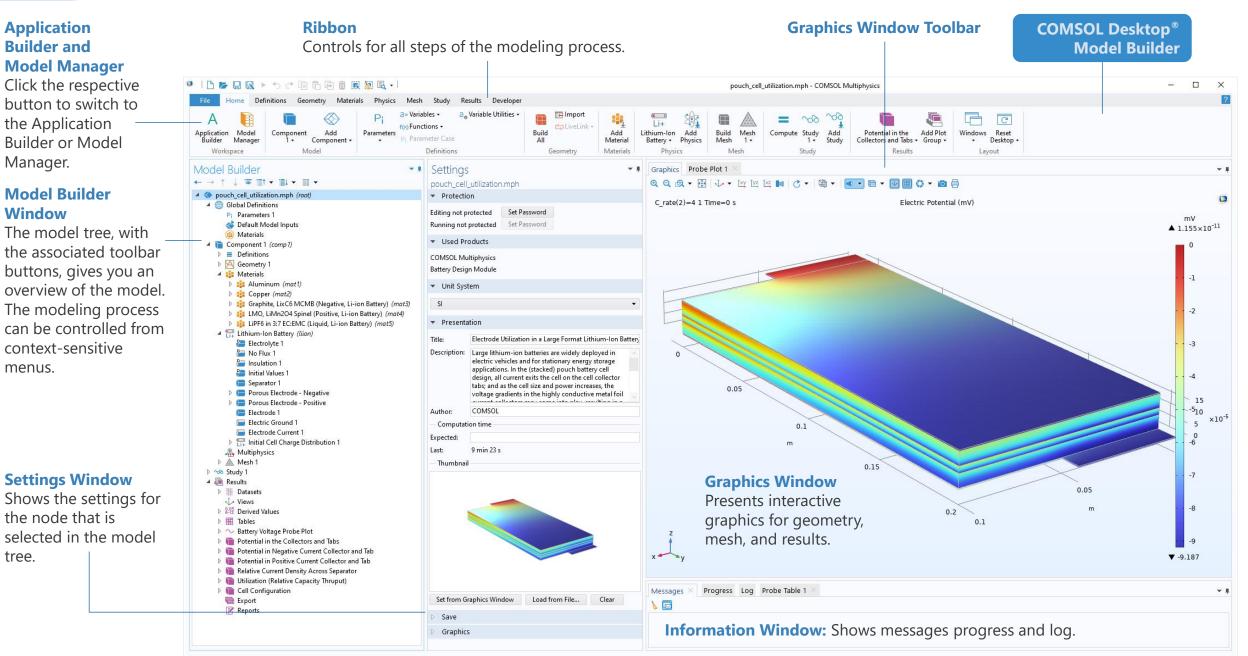
- Find maximum temperature during misuse
- Avoid thermal runaway

Demonstration

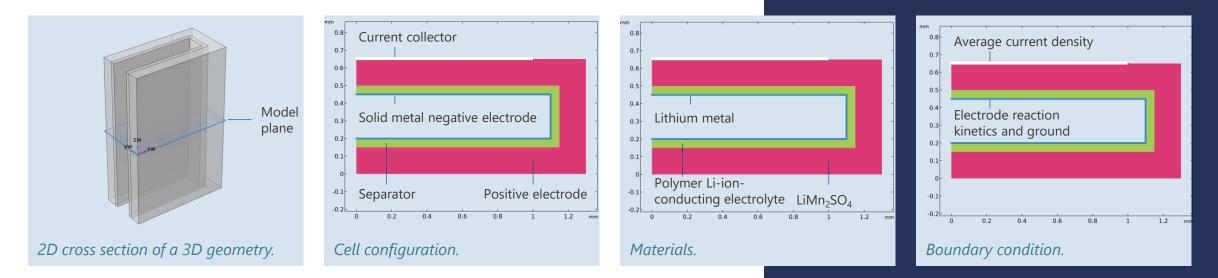


3

THE FIRST STEP The Model Wizard

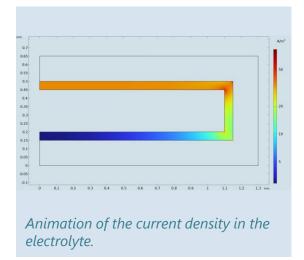

When creating a new model, the Model Wizard assists with selecting:

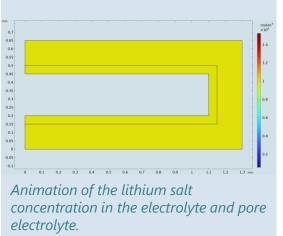
- Dimension (3D, 2D, 1D, or 0D)
- Physics interface(s) from the physics list
- Study for the physics interfaces

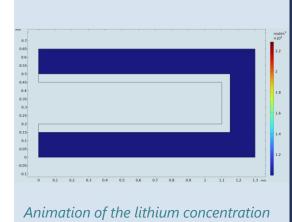


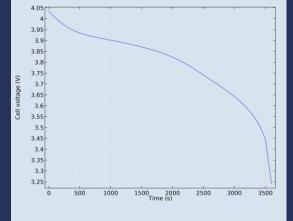
Remove

- 3. Select physics interfaces.
- 4. Select study.




Model Definition




- Full Newman model for the Li-ion battery positive electrode
- Half-cell model with solid negative electrode and LMO porous positive electrode
- Material properties from the Battery Design Module material library
- Current density applied at the current collector corresponds to 1C
- Butler–Volmer kinetic expression at the lithium metal boundary
- Time-dependent study

Model Results

Animation of the lithium concentration in the particles in the positive electrode.

Cell voltage vs. time.

- The positive electrode initially discharges in the regions close to the current collector, *i.e.* the upper rectangular part
- As the lithium concentration is depleted, the regions further away from the current collector are discharged
- In this case, the position of the current collector requires that the model is at least 2D for the cell to be modeled accurately

Concluding Remarks

Modeling with the Battery Design Module

• Battery interfaces and a material library for most battery chemistries

- Ability to enter any battery chemistry
- CAD import, built-in CAD, great meshing tool, unlimited evaluation, and visualization
- Straightforward modeling workflow, just like for all types of modeling and simulation areas

🏴 🗅 🃂 🖳 🔌 ५ ५ ८ वि कि 🛱 🗴 🔣 🖳 • ।		pouch_cell_utilization.mph - COMSOL Multi
File Home Definitions Geometry Materials Physics Mesh	Study Results Developer	
A Deplication Model Builder Manager Workspace Model Model	tions -	Li+ ithium-lon Add Battery + Physics Physics Li+ Build Mesh Mesh 1+ Mesh Study Compute Study Study Compute Study Study Compute Study Study Compute Study Study Study
Model Builder 🔹 🕈	Settings 🗸 🖡	Graphics Probe Plot 1 ×
	0	
	pouch_cell_utilization.mph	
 Spouch_cell_utilization.mph (root) Global Definitions 	 Protection 	C rate(2)=4 1 Time=0 s
Pi Parameters 1	Editing not protected Set Password	-
🐟 Default Model Inputs	Running not protected Set Password	
Materials		
Component 1 (comp 1)	 Used Products 	
▷	COMSOL Multiphysics	
 Geometry 1 Haterials 	Battery Design Module	
Aluminum (mat1)	- Unit Curtam	
Copper (mat2)	 Unit System 	
Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat3)	SI 🗸	
LMO, LiMn2O4 Spinel (Positive, Li-ion Battery) (mat4)		
LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery) (mat5)	 Presentation 	
Lithium-Ion Battery (liion)	Title: Electrode Utilization in a Large Format Lithium-Ion Battery	
Electrolyte 1	Description: Large lithium-ion batteries are widely deployed in	
Insulation 1	electric vehicles and for stationary energy storage	ů l
🎦 Initial Values 1	applications. In the (stacked) pouch battery cell design, all current exits the cell on the cell collector	
🔚 Separator 1	tabs; and as the cell size and power increases, the	0.05
Porous Electrode - Negative	voltage gradients in the highly conductive metal foil	0.03
Porous Electrode - Positive	Author: COMSOL	
Electrode 1		
Electrode Current 1	- Computation time	0.1
Initial Cell Charge Distribution 1	Expected:	m
and Multiphysics	Last: 9 min 23 s	Ň
Mesh 1	- Thumbnail	
▷ へる Study 1		
▲ Q Results ▷ Datasets		
Views		
▷ 8.85 Derived Values		
Tables		
$ ho \sim$ Battery Voltage Probe Plot		z
Potential in the Collectors and Tabs Detential in Negative Current Collector and Tab		
 Potential in Negative Current Collector and Tab Potential in Positive Current Collector and Tab 		x y
Relative Current Density Across Separator		
Utilization (Relative Capacity Thruput)		
Cell Configuration		Messages $ imes$ Progress Log Probe Table 1 $ imes$
Export	Set from Graphics Window Load from File Clear	
📝 Reports	Save	

