STATE OF POWER ESTIMATION FOR MOTORSPORT APPLICATIONS

Adriano Schommer

OXFORD BROOKES UNIVERSITY

- Oxford Brookes Racing
- High Voltage & Energy Storage Lab
- 08 channels cell tester
- > 05 thermal chambers
- AVL battery pack tester (250kW 1200V)

Agenda

- Introduction to Formula Student
- Oxford Brookes Racing team
- Projects
- State of power estimation
- Q&A

PULS

What is Formula Student?

- +1000 teams from more than 20 countries design and build a formula-style racing car.
- Europe's most established educational engineering competition.

DYNAMIC EVENTS

Acceleration (75 points) 75m straight line run

Skidpad (75 points) Figure of 8 constant radius circles

Autocross (100 points) One lap time trial

Endurance (250 points) 22km time trial

PHIL IS

Efficiency (100 points) Energy used

STATICS EVENTS

Design (160 points) Justify your design to industry professionals

Cost (120 points)

How much does your car cost to make Understanding of cost driven decisions

Business (120 points) Present a business model based around your car

Lap Time Simulation (20 points) Evaluate four different FS powertrain types and two aerodynamic configurations.

OBR Legacy

Top UK

2003

Top UK

Team

2012

Fastest Ever

UK Car

2016

1999

2009 -----

Hybrid Vehicle

Development

lst Place Design Top UK Team

2014

2nd Place Overall 2019

2018

OXFORD BROOKES RACING

OBR Legacy

Top UK

Team

Top UK

Team

2012

Fastest Ever

UK Car

2016

2019

2018

2021

1st Place Design 1st Place Laptime

1999

Hybrid Vehicle 2003

Development

2009

1st Place Design Top UK Team

2014

Top UK Team

Battery Development

Battery Development

2

ANK

Testing

Modelling

4 Mechanical design

Battery Test Consortium (BTC)

Cell	Chemistry
Samsung 25R	NMC
LG HG2	NMC
Sony VTC6	NMC
Melasta SLPB6542126	LCO
Melasta SLPB8542126	LCO
Melasta SLPB8346143	LCO
Melasta SLPBB142124	LCO
Melasta SLPB8870175	LCO
Melasta SLPB7336128HV	NMC
Melasta SLPB9542124HV	NMC
Melasta SLPBB042126HV	NMC
Melasta SLPB7579207HV	NMC

Free available datasets for FS teams:

- HPPC
- GITT
- EIS
- Pseudo-OCV
- FS Endurance Drive Cycle
- Degradation

BTC GitHub repository

Planden, B., Lukow, K. (2021). Battery Test Consortium. Available at: https://github.com/Oxford-Brookes-HVES/BTC

Cell tab resistance

Battery pack specifications:

- LCO Melasta pouch cell
- 550V
- 2P130S

Charging C-rates testing

Charging C-rates testing

Battery Modelling

Equivalent Circuit Model

How much charge or discharge power is available for the next Δt seconds? **Battery Pack** . . . Inverters Motors **Limiting layers**

OXFORD BROOKES RACING

[1] Plett, G. L. (2004). High-Performance Battery-Pack Power Estimation Using a Dynamic Cell Model. IEEE Transactions on Vehicular Technology, 53(5), 1586–1593. https://doi.org/10.1109/TVT.2004.832408

OXFORD BROOKES RACING

Challenges

OXFORD BROOKES RACING

Challenges

Next steps

- 1. Model Predictive Control (MPC)-based SOP estimation [2]
- The bisection algorithm considers the input parameters constant over the future horizon.
- MPC computes optimal power profile to achieve max power up to the constraints boundaries
- 2. Scale from cell level to pack level considering cell-to-cell variations and temperature gradients

[2] Xavier, M. A., Kawakita De Souza, A., Plett, G. L., & Scott Trimboli, M. (2020). A Low-Cost MPC-Based Algorithm for Battery Power Limit Estimation. *Proceedings of the American Control Conference*, 2020-July, 1161–1166. https://doi.org/10.23919/ACC45564.2020.9147337

Thank you!

Adriano Schommer

Oxford Brookes Racing Project Lead

