

COMSOL Multiphysics®

One software environment, any engineering field.

A modeling and simulation platform that provides fully coupled multiphysics and single-physics modeling capabilities.

COMSOL Multiphysics®

A powerful modeling and simulation platform.

- 35 add-on modules with dedicated user interfaces and tools for modeling and simulation in electromagnetics, fluid flow, heat transfer, structural mechanics, acoustics, and chemical engineering
- 14 interfacing products to connect simulations with spreadsheet, technical computing, CAD, and ECAD
- Based on finite element, boundary element, discontinuous Galerkin, method of lines, and other numerical methods
- Solid, gas, and liquid properties are available in comprehensive material libraries in the platform product and addon products

APPLICATIONS

Build apps with the Application Builder. Compile apps into standalone executable files with COMSOL Compiler™. Host and administer apps with COMSOL Server™.

MANAGEMENT

Centrally administer and collaborate on models and apps in the Model Manager and Model Manager server.

Battery Design in COMSOL Multiphysics®

Battery Design Module

An overview of the functionality for modeling different battery chemistries at different scales and for different purposes.

Cell Models

- Performance and design
- Capacity fade and aging
- Different levels of fidelity

Pack Models

- Cylindrical cells
- Pouch cells
- For performance and thermal management

Thermal Management

- Heat transfer mechanisms
- Electrochemical heat sources
- Short circuits and thermal runaway

Study Types

- Time dependent
- Cyclic voltammetry, EIS, cycling
- Parameter estimation

The Battery Design Module: Chemistries

- Predefined electrochemistry for all major battery chemistries
- Nernst–Planck equations and kinetics for any chemistry, porous or solid electrodes
- Time-dependent, including transient effects, and physics-based EIS* studies
- Multiphysics: electrochemical heating, fluid flow, and structural mechanics for expansion and contraction during cycling

Battery Model Types in the Battery Design Module

Heterogeneous Models

- 3D, full geometry, and geometry from tomography
- Transport of all species, kinetics, potentials, etc.
- For fundamental studies of structure, kinetics, mass transport, by-reactions, aging, and more

Homogeneous Models

- 1D to 3D, plus 1D particle diffusion of Li or H, e.g., the Newman model
- Homogeneous electrodes
- For fundamental studies but also for design, performance, aging, and more
- 1D also for battery packs

Single Particle Models

- 0D, plus 1D particle
- Electrode described with a single "particle"
- Kinetics for each electrode
- For battery packs and systems
- Real-time parameter estimation

Equivalent Circuits and Lumped Models

- 0D, plus 1D particle
- Lumped cell parameters
- Computes the SOC* to determine the OCV*
- For battery packs and systems
- Real-time parameter estimation

*SOC = state of charge; OCV = open cell voltage

The Battery Design Module: Scales

- Modeling from microscale to pack scale
- Full electrochemistry in all scales in 1D, 2D, and 3D
- 1D detailed electrochemistry or 0D lumped cell models for modeling many cells at the pack scale, e.g., for thermal management models
- Time-dependent studies, including transient effects, charge-discharge cycles, and EIS* studies for all scales and chemistries

Battery Chemistries

Newman model for Li-ion cells:

- Models the electrolyte concentration and intercalating species (Li), as well as electrolyte and electrode potentials
- Aging effects, SEI, and effects of expansion and contraction during cycling

Battery Chemistries

Other examples

Lead Acid
Nickel Metal Hydride
Lithium-Sulfur, Li-S
Nickel-Cadmium, NiCd
Zink-Silver Oxide, Zn-AgO
Zink-Bromine, Zn-Br

Aging and Thermal Management

Modeling of Heat Generation and Heat Transfer

Cooling

- Avoids excess SEI (Li-ion) formation and gassing
- Slows down deterioration of materials

Hot Spots

- Lead to accelerated aging
- Increase risk for thermal runaway

Startup from Cold

- Low-temperature operation may result in lithium plating
- Low temperature yields low electrolyte conductivity and poor performance

Worst Case

- Find maximum temperature during misuse
- Avoid thermal runaway

Demonstration

The Model Wizard

When creating a new model, the Model Wizard assists with selecting:

- Dimension (3D, 2D, 1D, or 0D)
- Physics interface(s) from the physics list
- Study for the physics interfaces

Select Study Preset Studies for Selected Physics Interfaces Solid Mechanics Geometrical Optics Preset Studies for Selected Multiphysics L Time Dependent More Studies Preset Studies for Some Physics Interfaces ™ Empty Study Added study: L Time Dependent Added physics interfaces: Geometrical Optics (gop) Heat Transfer in Solids (ht) Solid Mechanics (solid) Surface-to-Surface Radiation (rad) ■ Multiphysics Ray Heat Source (rhs1) Thermal Expansion (te1) Heat Transfer with Surface-to-Surface Radiation (htrad1) 1. Select Model Wizard.

2. Select space dimension.

4. Select study.

Select physics interfaces.

Click the respective button to switch to the Application – Builder or Model Manager.

Model Builder Window

The model tree, with the associated toolbar buttons, gives you an overview of the model. The modeling process can be controlled from context-sensitive menus.

Settings Window

Shows the settings for the node that is selected in the model tree.

Model Definition

- Full Newman model for the Li-ion battery positive electrode
- Half-cell model with solid negative electrode and LMO porous positive electrode
- Material properties from the Battery Design Module material library
- Current density applied at the current collector corresponds to 1C
- Butler–Volmer kinetic expression at the lithium metal boundary
- Time-dependent study

Model Results

- The positive electrode initially discharges in the regions close to the current collector, *i.e.* the upper rectangular part
- As the lithium concentration is depleted, the regions further away from the current collector are discharged
- In this case, the position of the current collector requires that the model is at least 2D for the cell to be modeled accurately

Concluding Remarks

Modeling with the Battery Design Module

- Battery interfaces and a material library for most battery chemistries
- Ability to enter any battery chemistry
- CAD import, built-in CAD, great meshing tool, unlimited evaluation, and visualization
- Straightforward modeling workflow, just like for all types of modeling and simulation areas

Visit our stand #45, Hall 3

Contact Us

comsol.com/contact

