DV POWER SOLUTIONS FOR BATTERY MAINTENANCE

Vedran Mulic, MSc

Regional Sales Manager

vedran@dv-power.com

Agenda

- DV Power company profile
- Test methods and relevant standards for battery maintenance
- Battery capacity tester
- Battery internal resistance tester
- Battery monitoring systems
- DV Power portable units (up to 1350 V) for battery recycling, second-life assessment, electric vehicle battery pack testing, preshipment discharge, etc.

About DV Power

IBEKO Power AB with the headquarters in Stockholm, Sweden was founded in **2000** by the group of engineers with an extensive experience in the power electronics technology area.

DV Power Products

Battery Test Equipment Transformer Test Equipment Circuit
Breaker Test
Equipment

Motor /
Generator
Test
Equipment

Electrical Safety Test Equipment

Battery Test Equipment

Existing product line

- Battery Load Units (capacity/discharge testers) BLU/BXL series
- Battery Voltage Recorders BVR series
- Battery Voltage Supervisors BVS series
- Universal Battery Chargers BAC series
- Battery resistance testers IBAR series
- Online battery monitoring MB100 series

Distributors Map

• Headquarters: Stockholm, Sweden

• Branch office: Orlando, FL, USA

Distributors and representatives: 90

Countries: 70

UK & Ireland Representative

DRALLIM INDUSTRIES LTD.

Millwood House, Drury Lane St. Leonards on Sea East Sussex TN38 9BA UNITED KINGDOM

E-mail: sales@drallim.com/
Web: https://drallim.com/

Representing DV Power in the UK and Rol

DV Power Products

Why DV Power?

- Products used in more than 110 countries worldwide
- Robust design for field use
- Simple and easy to operate
- Wide product line
- Free-of-charge DV-Win software
- Warranty period: 3 + 1 year
- Customer support 24/7

Vented Lead Acid batteries (VLA)

- •IEEE 450
- •IEC 60896-11

Valve-regulated Lead Acid (VRLA)

- •IEEE 1188
- •IEC 60896 21

Nickel-Cadmium

•IEEE 1106 – 2015

Lithium

Not published yet

Vented Lead Acid batteries (VLA) - IEEE 450

Measurement	Monthly	Quarterly	Annually
Battery (String) Voltage	✓		
Charger Voltage & Current	✓		
Ambient temperature	✓		
Visual Inspection	✓		
Electrolyte Levels	✓		
Pilot Cell Voltage, Temperature, Specific gravity	✓		
Cell Temperature		√ (10%)	
Cell Internal Ohmic			User Option
Connection Resistance			✓
Capacity Test Intervals			25 % of expected service life

Valve-regulated Lead Acid (VRLA) – IEEE 1188

Measurement	Monthly	Quarterly	Annually
Battery (String) Voltage	✓		
Charger Current	\checkmark		
Ambient temperature	✓		
Visual Inspection	\checkmark		
Electrolyte Levels			
All Cell Voltages		✓	
Cell Temperature		√ (10%)	
Cell Internal Ohmic		\checkmark	
Connection Resistance			✓
Capacity Test Intervals			25 % of expected service life or every 2 years

Nickel-Cadmium – IEEE 1106

Measurement	Quarterly	Semi- annually	Annually
Visual Inspection	✓	✓	√
Charger Output Current	✓	✓	✓
Charger Output Voltage	✓	✓	✓
String (Float) Voltage	✓	✓	✓
All Cell Voltages		✓	
Cell Temperaure		√ (10%)	
Cell Internal Ohmic	N/A	N/A	N/A
Connection Resistance			✓
Capacity Test Intervals			25 % of expected service life

DV Power Solutions for Battery Testing

- Battery Capacity Testers (0 1350 V DC)
- Battery Internal Resistance Testers
- Cell Voltage Monitoring during Capacity Test
- Battery Chargers
- Discharging Batteries Before Transport (Li-ion)
- Second-Life assessment or Recycling
- Electric vehicle battery pack testing, etc.

Capacity Testers

BLU-T Series

0,9 - 70,5 V DC Up to 350 A **BLU-A Series**

5,55 - 300 V DC Up to 240 A **BLU-C** Series

3.0 - 800 V DC Up to 300 A **BLU-D** Series

0 - 1350 V DC Up to 100 A with integrated ZVD

Battery Capacity Test

- The most important parameter for condition assessment
- The only 100%-reliable method to test your battery (slow, but safe).
- The key test according to IEEE standards.
 - Acceptance test
 - Periodically
 - If we suspect there is a problem

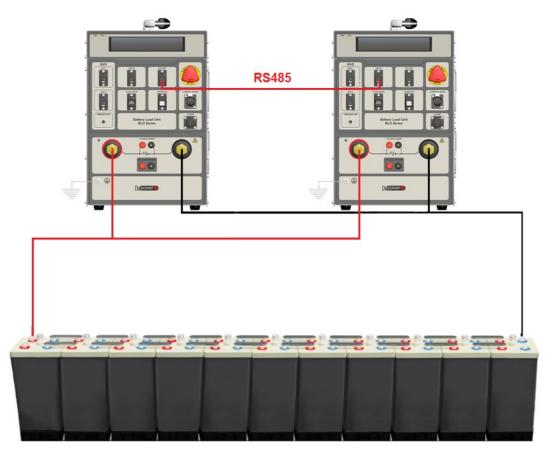
-> HOW?

Battery Capacity Test

- Fully charged battery (up to float or maximum voltage)
- Connect battery to "dummy load" (simulating real battery load)
- Test parameters settings
 - Current / power / resistance
 - Time
 - Limits (end voltage, capacity, and time)
- -> After 10h (usually), the result is ...

Battery Capacity Test

- The result is a number: C = I x t (Ah)
- Example:
 - Manufacturer: $C_{10} = 1200 \text{ Ah}$
 - Measured: $C_{M10} = 1 134 \text{ Ah } (94,5\%) \text{ good?}$
- Yes, because 80% limit not breached (960 Ah)
- 94,5% Ah capacity is still there


PRODUCT RANGE

8 (Ah) C1 (Ah) 5 Vpc 1.75 Vpc 179 124 224 155
224 155
268 185
320 212
384 252
447 292
539 330
720 445
899 554
076 657
275 784
701 1049
130 1322
544 1552
169 117
211 146
253 173
42 30
84 59
126 88

According to DIN 40 742 2 According to DIN 40 744 *includes i

Battery Capacity Test – parallel operation

Solutions for Recycling

BLU + ZVD System

- Controlled constant current discharge down to 0 V (up to 60 A)
- 2-step process:
 - Discharge down to 0 V
 - Battery Short-circuited (ZVD)



BVS-4 Buttery Voltage Supervisor

Consists of CVM-4 modules:

- 1 module monitors 4 cells
 - Less cables
 - Less time for connection
 - Reduced complexity
- CVM-4 monitors:
 - Cell voltage
 - Cell temperature (optionally)

MANUAL CELL VOLTAGE MEASUREMENT

Battery Voltage Recorder BVR

- Support tool for battery capacity test
- Record, view and analyze cell float voltages
- Enables simultaneous string voltage and current measurement to analyze discharge test process
- Upload and view DMA35 Hydrometer Data
- Easy transfer of measured data to DV-B Win software

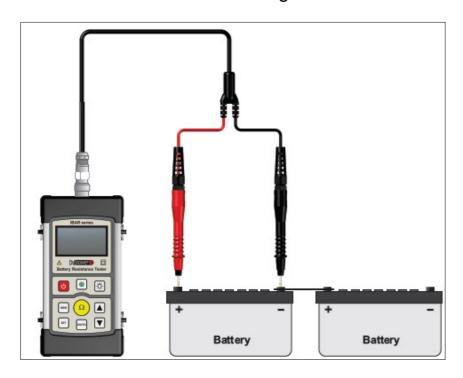
Battery Monitoring System MB 100

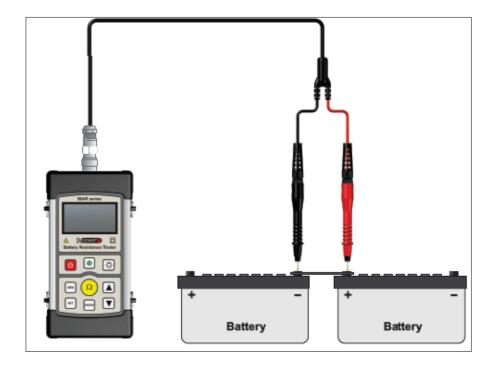
Battery Monitoring System – coming soon!

- Designed for 24/7 real time monitoring of battery systems for various applications
- Monitors and logs battery cell and string parameters, as well as alarm conditions
- String voltage & current, and ambient temperature measurement
- Use settable limits and acquisition intervals
- Logging of cell/battery parameters with data/time stamps
- Alarm conditions logging and alarm email alerts
- Export data for further analysis

Battery Internal Resistance Tester - IBAR

- Handheld device (less than 1 kg)
- Injection of 1 kHz AC
- Test current: 1,5 mA 150 mA
- Measured parameters:


Internal cell resistance/ intercell connection resistance
Cell voltage



Battery Internal Resistance Tester – IBAR Connection to Test object

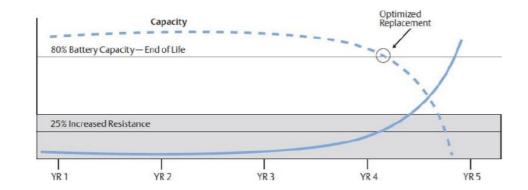
1. Cell resistance and cell voltage measurement

2. Intercell connection resistance measurement

Internal Ohmic Measurement – Evaluation Criteria

Cell Acceptance Criteria—Deviation From the Nominal Value or Adjusted Average

Type of Measurement	G Green Good Range	Yellow Watch	Red Probable Low Capacity	Danger Probable Dead Cell
Conductance	0-15%	15–25%	25-40%	>40%
Impedance	0–20%	20-40%	40-80%	>80%
Resistance	0–20%	20–40%	40–80%	>80%


Source: W. Johnson, Stationary Battery Monitoring by Internal Ohmic Measurements, EPRI, Palo Alto, CA: 2002. 1002925.

- Based on experience (applicable to VLA and VRLA)
- Proceed to capacity test to check condition!

Correlation Between Internal Resistance and Battery Capacity

Relation between Battery Internal Resistance and Battery Capacity

 A change in impedance / conductance / resistance of more than 25% could indicate a bad battery / cell Inversely proportional correlation between battery capacity and resistance – VLA and VRLA batteries

Universal Battery Charger BAC series

- Lightweight only 10 kg
- Battery Voltage range:
 - **BAC25A**: 10 300 V (up to 25 A)
 - **BAC50L**: 1 − 60 V (up to 50 A)
- Controllable charging process (IU and UU modes available)
- Temperature compensation charging
- Overvoltage alarms to prevent excessive charge

Follow Us on Social Media



- How-to videos
- Instruction videos
- Device application
- Device specifications
- Testing procedures

- Latest news
- Events
- Webinars announcements
- Application notes

- Latest news
- Events
- Webinars announcements
- Application notes

Thank you

Questions?

You can contact me at vedran@dv-power.com and visit at stand C33!

