Simon Taylor Battery Business Development 28 Sept 2023 Battery Tech Expo, Gothenburg

Boosting Product Quality at Scale Analytical Chemistry's Crucial Contribution

Onboarding & Training

All rights reserved. @ 2023 METTLER TOLEDO

Training...

The Talent Pool is in its Infancy

gigawatt-hour of capacity.

Jobs created by new lithium-ion battery plants per

On average, new battery factories add approximately 80 jobs for every

Critical skills missing for 250,000+ new jobs to be created by 2040

gigawatt-hour¹ OEM joint venture or
 Start-up **OEM** subsidiary 140 • 2023 120 100 2022² 2021 80 jobs/GWh 80 • 2018 2023 2020 [\]2021 2020 60 • 2022 2024 2018 • 40 20 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Factory capacity, gigawatt-hour

¹Comparability of indications is limited due to differences in value-chain coverage—for example, battery-cell production only versus local module and pack production or colocation of R&D facilities. In general, values refer to the overall number of jobs. ²Years denote start of production. Source: Press search

Electrochemistry, Battery Chemistry	88%	71%
Battery materials (chemical engineering, materials science)	74%	79%
Mining	3%	32%
Electrical	41%	4%
Power Electronics	26%	7%
Software/BMS	41%	21%
System Design	50%	21%
Prototyping	38%	14%
Battery testing	41%	18%
Safety (electrical, fire, hazmat, etc.)	29%	11%
Application of batteries (installation, operation, etc.)	29%	7%
Operation and maintenance	26%	70/
Battery recycling	18%	43%
Environmental engineering	12%	14%
Project management	26%	25%
Technical lead, manager	47%	25%
Supply chain management	۲۶%	32%
Manufacturing (incl. plant	50%	29%

Cell and Component

Manufacturing

(electrodes,

electrolytes, modules,

packs)

Incumbent

Integrator

Raw Materials,

Refinement, and

Recycling

1	Warm-up
2	Introduction to METTLER TOLEDO
3	Strategies to Scale Your Laboratory & Workflows
4	Scaling Your Employees
5	Summary

Our Innovative Solutions Across The Value Chain

METTLER TOLEDO 7

From Mining to Recycling – MT Provides Measurement Solutions Across the Supply Chain

METTLER TOLEDO Solutions help to:

- Streamline processes
- Enhance productivity
- Ensure accurate results
- Reach compliance with regulatory requirements
- Optimize costs and reduce waste

- Market Head Office
- Sales and Service Office
- METTLER TOLEDO
- Dealer and Partner

Global Presence

Largest service force of certified technicians within the industry.

50+ country coverage 1500+ Service Technicians

Acknowledged for Accuracy METTLER TOLEDO Services ensure that your equipment is always operating at peak performance so that your measurements meet productivity, quality and regulatory requirements.

GreenMT is our Corporate Responsibility & Sustainability Program

3 Challenges During Scale-Up

Scaling throughput, scaling workflows, scaling people

- Implement robust systems
- Automate daily Tasks
- Reduce human errors
- Establish a culture of quality

Optimizing Workflows

- Identify and streamline processes
- Digitalize workflows across areas
- Improve collaboration and communication

- Provide comprehensive onboarding training
- Offer ongoing specialized training & development
- If possible: Hire talent with existing specific skills

1	Warm-up
2	Introduction to METTLER TOLEDO
3	Strategies to Scale Your Laboratory & Workflows
4	Scaling Your Employees
5	Summary

Strategy 1: Eliminate "Waste"

Identifying the 8 wastes is your first step to productivity gains

Reduce or eliminate the 8 Wastes:

Defects

Overproduction

Waiting Time

Not engaging all Employees

Transportation

Inventory

Motion / Distances

Extra Processing

(TIMWOODS equivalent)

Strategy 2: Use AI to Speed Up Evaluations

Save time by using AI to autonomously evaluate your thermal curves

Evaluating thermal analysis results leaves many analysts questioning:

- What is the type of effect?
- Where does the effect begin and end?

Our **AlWizard**[™] answers these questions - even for complex curves.

- All thermal effects are recognized
 - AlWizard standardizes the analysis, producing consistent results
 - AlWizard uses adaptable, trainable neural networks

Did You Know?

A METTLER TOLEDO industry survey uncovered that The percentage of customers that spend too much time on data evaluation and documentation **is 63%**

DSC 3+ & AlWizard Software

Strategy 3: Scaling Workflows

How to scale your workflow from a single instrument, to a workhorse

- Electrolyte solutions are often unstable, and susceptible to rapid ageing
- They change color and often turn turbid even after very short atmospheric exposures
- Traditional color measurements use pre- defined liquid standards or a printed color scale

Challenges:

- This measurement is only partially reliable, the result is influenced by:
 - Lighting conditions
 - The size of the vessel surface
 - The cleanliness of the vessel
 - The subjective opinion of the observer, and
 - The mood of the observer

PLATINUM-COBALT COLOR SCALE (ABBREVIATED: PT-CO COLOR SCALE, DEPRECATED: HAZEN ODER APHA COLOR SCALE)

All rights reserved. @ 2023 METTLER TOLEDO

Strategy 3: Scaling Workflows

Spectroscopy is the accurate way to monitor electrolyte solution ageing, with built-in color scales

- Samples: Electrolyte (liquid)
- Calculation: APHA Pt-Co Hazen color scale
 CIELAB color scale
- Application notes available:
 - APHA Color Determination
 - CIELAB Color Measurement

Standalone UV5 UV/Vis

UV/Vis with 8-sample cuvette changer

UV/Vis with InMotion and Fiber Probe

Figure 18. The L* value is represented on the center axis. The a* and b* axes

METTLER TOLEDO | 15

Increasing automation needs

Strategy 3: Scaling Workflows

Multiparameter measurements reduce hands-on technician time by 70%

- Parallel determination
- Reduce operator involvement by up to 70%
- No human intervention required for d, n, CIELAB, APHA and/or YI
- Ensures sample integrity
- Unified / single report with LabX[™] software
- Add pH / COND / Titration instruments if needed
- Other applications:
 - Slurries
 - Wastewater
 - Raw / Incoming materials control

Sample	d ²⁰ [g/cm ³]	n20	CIE: L / a* / b*	APHA	YI
Li-e 1.	1.27248	1.40064	99.9 / 0.7 / 0.2	8.9	0.5
Li-e 2.	1.27247	1.40065	99.9 / 0.9 / 0.1	5.1	0.2
Li-e 3.	1.27248	1.40065	99.6 / 0.9 / 0.2	7.7	0.4
Li-e 4.	1.27246	1.40064	99.8 / 0.7 / 0.2	5.3	0.3
Li-e 5.	1.27249	1.40065	99.9 / 0.8 / 0.1	5.1	0.3
Li-e 6.	1.27248	1.40063	99.9 / 1.1 / 0.2	5.1	0.2
NMP 1.	1.03239	1.47082	99.8 /-0.8 / 2.1	67.2	3.6
NMP 2.	1.03238	1.47082	100.5 /-0.8 / 2.3	74.2	3.9
NMP 3.	1.03239	1.47082	99.9 /-0.8 / 2.2	68.7	3.6
NMP 4.	1.03238	1.47082	100.1 / -1.0 / 2.4	73.1	4.0
NMP 5.	1.03238	1.47082	100.6 / -1.0 / 2.1	65.1	3.5
NMP 6.	1.03239	1.47082	100.5 /-0.7 / 2.2	70.6	3.7

 Table 1: Density (d²⁰), refractive index (n²⁰) and color CIELab, APHA and Yellowness Index mean value and standard deviation (indicated by s) results of different samples of lithium-electrolyte (Li-e) and N-methyl-2-pyrrolidone (NMP).

Increased Lab Productivity Speed up Your Daily Work

- Increase efficiency and traceability with automatic and real-time capture of complete centralized data and reporting
- Prevent time-consuming rework: Block out-of-specs instruments.
- Automatically calibrate and/or test instruments and trigger service reminders
- Develop your workflows in LabX[™] only once and deploy to all connected instruments
- Speed up your workflows with step-by-step user guidance and multiparameter solutions
- Be future-ready for industry standards LabX supports your compliance needs

METTLER TOLEDO | 18

One Software Solution for METTLER TOLEDO Instruments

Covers >40% of Typical Laboratory Instruments

1	Warm-up
2	Introduction to METTLER TOLEDO
3	Strategies to Scale Your Laboratory & Workflows
4	Scaling Your Employees
5	Summary

Collaborating for Success

The most common questions I heard this year...

"What can you tell us that's new?"

"What should we be testing for, and how?"

METTLER TOLEDO 20

Collaborating for Success

METTLER TOLEDO is proud of our global product specialists, application and service teams

For a full list of our training courses: Contact your local office:

```
\overrightarrow{\text{www.}} \text{ mt.com} \rightarrow \text{Contact Us}
```

For all our battery collection page and applications:

www. mt.com/li-ion-battery

mt.com/Library

WWW.

mt.com/Applications

For our Expertise Library - for training material, basics of chemistry, instrument guides and much more)

Description	Basic	Advanced	Expert	Customized
Basic & Functional Operation - Instruments	X	x	Х	X
EduPac Document & Certified training	X	X	X	X
Care, Maintenance & Troubleshooting		X	X	X
GxP Hints & Tips		X	X	X
LabX Overview		X	X	X
Full GxP for specific instruments			X	X
How to build a method			X	X
Detailed Application Theory & Calculations			X	X
Method development**				X

Example training offering for Analytical Chemistry instruments from MT

Have a Follow-up Question? Come To Our Booth @ 02C

Balances

 Sample preparation, Formulation, Check-weighing

Thermal analysis

- TGA and DSC : heat capacity, decomposition temperatures, enthalpy
- TMA and DMA : thermal, mechanical and physical properties

Karl Fischer Titration and Moisture Analyzer

 Water and moisture content of battery components and raw materials

Titration

- Determination of purity/impurity of metals and active materials
- HF content determination through acid-base titration

Autosampler (InMotion)

 Improve process efficiency, safety, and throughput.

UV/Vis

 Anions, non-metal elements, color and degradation analysis

Density and Refractometry

 Quality control of incoming goods and recycled chemicals

Oxygen pH and Conductivity

 Ensure inert working conditions and control particle size distribution in PCAM coprecipitation

FTIR (ReactiR)

 Monitor chemical reactions and give real-time insights

Automated Reactors

 Calorimetry measurements and data recording for process understanding and control

Melting Point and Dropping Point

- Dropping point of anode materials
- Softening point of pitch for anode manufacturing

Water

 Monitor ultrapure water and ensure the highest quality is delivered

Particle analyzer (Particle Track)

 Monitor and characterize crystallization reactions, particle size, and particle size distribution.

Backups – Application Coverage

Overview of Titration, Density, UVVIS Applications

	Battery materials	Analysis
Anode	 Graphite, petroleum coke Lithium titanate, LTO (Li₄Ti₅O₁₂) 	 Water determination by KF Titration: C30S + InMotion KF Electrode slurry (Graphite surface modification): DP70/90.
Electrolyte	 Salt: Lithium hexafluorophosphate, LiPF₆ Solvents e.g. Ethylene carbonate, EC (CH₂O)₂CO Ethyl methyl carbonate, EMC (C₄H₈O₃) Additive: Vinylene carbonate, VC (CHO)₂CO Polypropylene, PP, or polyethylene, PE 	 Water determination by KF Titration:: C30S (direct injection) HF (free acid) and Cl⁻ - Titration Excellence Density – Density Excellence/Densito Conductivity – Tx with CB, Seven product portfolio Color of electrolyte – UVVIS Water determination by KF Titration: C30S + InMotion KF
Separator		
	 Lithium carbonate, Li₂CO₃ Lithium hydroxide, LiOH Lithium chloride, LiCI 	 Li₂CO₃, CO₃²⁻, LiOH, LiCI – T5/T7/T9 AI, As, Fe, Si, SiO₄²⁻ - UV/Vis F⁻: Titration Excellence/ISE
Cathode	 Lithium manganese oxide, e.g. LiMn₂O₄ (LMO) Lithium cobalt oxide, LCO (LiCoO₂) Lithium nickel-cobalt-aluminum, NCA (LiNi_xCo_yAl_zO₂) Lithium iron phosphate, LFP (LiFePO₄) 	 Water determination by KF Titration: C30S + InMotion KF Co, Mn, Ni, Fe, Li, AI - Titration Excellence PO₄³⁻: UV/Vis

METTLER TOLEDO 25

Applications

Water content	Water, H ₂ O	Solids, electrolyte	<u>M808</u> , <u>M820</u>	KF	
Free acid	Hydrofluoric acid, HF	Electrolyte	<u>M813</u>		
Alkali content	Lithium carbonate/hydroxide, Li ₂ CO ₃ LiOH	Electrolyte	<u>M828</u>	GT Acid/Base	
Lithium purity	Lithium, Li	LiOH	<u>M874</u> , <u>M875</u>		
Total metal content	Nickel, manganese, cobalt	NMC cathode material	<u>M832</u>	GT	
Cobalt content	Cobalt, Co	LiCoO ₂ cathode	<u>M829</u>	Complexometry	
Manganese content	Manganese, Mn	NMC cathode material	<u>M833</u>		
Cobalt and nickel	Cobalt, Co and nickel, Ni	NMC cathode material	<u>M834</u>	GT Redox	
Iron content	Iron, Fe	LiFePO ₄ cathode	<u>M831</u>		
Lithium content	Lithium, Li	LiOH, electrolyte	<u>M865</u>	GT	
Chloride content	Chloride, Cl-	Li-Battery materials	<u>M830</u>	Precipitation	
Density	Density of Electrolytes	Electrolyte, solvents	DERE0001	DE	
Softening Point - SP	Softening point of electrode pitch/slurries	Anode, cathode mat.	<u>SP-QC</u>	DP	
Conc. determination and monitoring	Metal ions, organic solvents – time dependence of absorption spectra	Anode, cathode mat., electrolyte	UVVIS-Fe	UV/Vis	
Color	Color determination	Electrolyte	UVVIS-Color		

Main Components of a Battery

Battery Component	Application
Anode, cathode	Thermal stability, decomposition behavior, decomposition products
Electrolyte	Melting, crystallization, water content, decomposition, decomposition products
Binder	Glass transition, melting, crystallization
Separator	Thermal stability, melting, crystallization, expansion, mechanical behavior in fluids
Battery Housing	Application
Plastic materials, metals	Thermal stability, decomposition behavior, decomposition products, melting,

crystallization