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Battery materials characterization ~SPECHAl

Materials and structures
Lithium ion battery structure

Structural analysis
Anode
Cathode
Separator
Electrode cross sections

Advanced analysis techniques
Solid-Electrolyte Interface (SEI)
Lithium analysis
Combined AFM-in-SEM

Technical Cleanliness &
Contamination

Analytical Techniques

Electron Microscopy
SEM (-STEM)
TEM (-STEM)
FIB (-SEM)
EDS, EBSD, WDS, EELS
Surface Analysis
(TOF-)SIMS
LEIS
XPS
AFM-in-SEM
Sample preparation
lon milling
Laser micromachining
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The Lithium lon Battery SpeCtrdIU

Anode Cathode
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Graphite (C) Aot Lithium cobalt oxide (LCO)
Lithium titanate (LTO) A Lithium manganese spinel (LMO)
Silicon (Si) G- Lithium nickel cobalt aluminium oxide (NCA)
Lithium nickel manganese cobalt oxides (NMCs)
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Structural analysis SpeCtra}!

Manufacturing Process
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- Mixing/ Coating/ . ) Assembly - Forming/
Materials > Dispersing = Drying | Calendering | Cutting =P JHousing | filing [P Aging

Distribution of binder in anode

Drying _AHOdITI

Unsuitable drying
condition causes
binder migration

Active -
material

Binder )

Binder migration during drying of
lithium-ion battery electrodes:
Modelling and comparison to
experiment - ScienceDirect

High resistance


https://www.sciencedirect.com/science/article/abs/pii/S0378775318304464
https://www.sciencedirect.com/science/article/abs/pii/S0378775318304464
https://www.sciencedirect.com/science/article/abs/pii/S0378775318304464
https://www.sciencedirect.com/science/article/abs/pii/S0378775318304464
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Anode Active material
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Porosity of separator

{Porosity)
* Asmaller value is preferable from the viewpoint of self-discharge,
prevention of micro-short circuit, and mechanical strength

* Alarger value is preferable from the viewpoint of charge-discharge
cycle. Normally, it is set to about 40-50%.

{Hole diameter)
* The larger the maximum pore size leads to high ion conductivity.
The smaller the maximum pore diameter leads the less self-discharge
and micro-shorting occur.
* The larger the average pore diameter leads the faster the permeation
rate of the electrolyte (better liquid absorption).
: : * If the pore size non-uniformity is large, the flow of ions becomes non-
e et e s e ety uniform, leading to deterioration in cycle characteristics.
) * The average pore size is usually set at around 0.1 to 0.5 um.
Migure 3. Dislribulion of the poee aspect ralio
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Manufacturing Process
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Analysis Dispersion among active material, conductive additive and binder in Mixing Process

Cathode

Distribution of

conductive

additive and

binder around Conductive
active material. additive

SU8700 0.01kV-D 3.1m:

m Low capacity

Samples provided by courtesy of Hajime Okui, DAINEN MATERIAL Co.,Ltd.
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Dispersion of active material with various size after drying process
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Electrode foil
Evaluation of positive electrode active material
particle size and dispersion state by image

analysis | Nissan Arc Co., Ltd. (nissan-arc.co.jp) m Lifetime
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PSD & porosity after calendering
Cathode Charge and discharge cycle causes

Original 100cycle 200cycle 500cycle crack in active material.
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Electrode cross sections SpeCtra}!

Cross section techniques
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Inert sample transfer — Spectra}!
Analysis of SEl layer after cycling

Regulus 1.0kV 5.9mm x700 SE{U)

To study the Solid — Electrolyte Interface
(SEI) formed during cycling it is often
neeessary to transfer the sample in vacuum
or inert.,gas before analysis in the SEM.




Lithium Analysis SpeCtra}!

2 kV Windowless SDD 30 kV EELS
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gpteCttrUrm with Oxford Extreme, windowless EDS It is now possible to mount EELS (Electron Energy
etector. Loss Spectrometer) also in a 30kV SEM/STEM.

Detector is capable in seeing the Li Ka signal, but . o . .
Li has.only few electrons and bonded in an oxide With EELS it is possible to detect Li and also see

state the, probability to emit an X-ray photon is very its chemical bonding state.
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EELS mapping of Li distribution SpeCtra}!

BF-STEM image EELS mapping (Li-K)

Instrument:HD2700 STEM, Analysis tool:EV3000. Accel voltage:200 kV. magnification 60kx.
Probe size:0.5 nm Ip:400 pA. mapping time:10 sec.



Active Cathode Material Coating SpeClTaIU

To study the amount of active cathode material LiCarbEx Method Etascon
coating that remains after cycling the LiCarbEx _
method was developed by Tascon.

Low Energy lon Scattering (LEIS) is a chemical

analysis technique with an information depth of 1 _
atomic layer (~0.3 nm).

Unfortunately, in practice, these cathode materials

are covered with a layer of Li,CO3z and LiOH that have _

to be removed before analysis of the coating

coverage.

Noble gas ions Result is coating closure in %

O atorm,
treated

Yield (cts/nC)

Intensity c
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Combined AFM and SEM imaging SpeCtrdl

Cathode active material

Optical microscope image SEM
’ +
Cathode active material Al foil current SSRM
layer collector

Atomic Force Microscopy (AFM) can add functional
imaging options to the topography and chemistry
contrasts provided by SEM.
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Step 1. TX stage:

Step 2. XRF stage
Elemental Analysis

X-ray source

Contaminants detection in a large area

= EA8000 Combined transmission X-ray |
with uXRF elemental analysis,

Fast screening for particles down to 20 um size

Millions of particles/hour - Wy - H
3
=  SEM with automated EDS for " v

particle analysis ' .
Up to 30.000 particles/hour o <

. 1
particles size down to <1um ﬁ."i'

(but only surface inspection)

= |nline X-ray detection of particles

Example of 3 units system

Count and size only, no chemistry S
<100 m/min, particles >30-50 umm

(looks through the material)

Control panel

(prepared by set-up (prepared by HITACHI)
supplier)



Our technique portfolio

Electron Microscopy
SEM (-STEM)
TEM (-STEM)
FIB (-SEM)
EDS, EBSD, WDS, EELS

Surface Analysis
(TOF-)SIMS
LEIS
XPS
AFM-in-SEM

Spectrar”

In-situ tools
Mechanical testing
Nanoindentation
Micromanipulation
Electrical probing
Heating, cooling, ...

Sample Preparation
Grinding, polishing
Cleaning
lon milling
Laser micromachining






