

Battery Materials Characterization Focusing on micro and surface analysis techniques

Mats Eriksson Spectral AB +46 709 119 666 mats.eriksson@spectral.se https://spectral.se

Battery materials characterization

Materials and structures

- Lithium ion battery structure
- Structural analysis
 - Anode Cathode Separator

Electrode cross sections

- Advanced analysis techniques Solid-Electrolyte Interface (SEI)
 Lithium analysis
 Combined AFM-in-SEM
- Technical Cleanliness & Contamination

Analytical Techniques **Electron Microscopy** SEM (-STEM) TEM (-STEM) FIB (-SEM) EDS, EBSD, WDS, EELS Surface Analysis (TOF-)SIMS LEIS XPS AFM-in-SEM Sample preparation Ion milling Laser micromachining

Spectrai

FE-SEM

Manufacturing Process

Anode Active material

Porosity measurement

Moderate pressResultIon conductivity

Too high compaction affects an ionic diffusion limitation and wettability.

Too much press

Manufacturing Process

Analysis Porosity of separator

《Porosity》

- A smaller value is preferable from the viewpoint of <u>self-discharge</u>, prevention of micro-short circuit, and mechanical strength
- A larger value is preferable from the viewpoint of <u>charge-discharge</u> <u>cycle</u>. Normally, it is set to about 40-50%.

《Hole diameter》

- The larger the maximum pore size leads to high ion conductivity.
- The smaller the maximum pore diameter leads <u>the less self-discharge</u> and <u>micro-shorting occur</u>.
- The larger the average pore diameter leads the faster the permeation rate of the electrolyte (better liquid absorption).
- If the pore size non-uniformity is large, the flow of ions becomes nonuniform, leading to <u>deterioration in cycle characteristics</u>.
- The average pore size is usually set at around 0.1 to 0.5 $\mu m.$

Self discharge, conductivity, etc

FlexSEM1000

Samples provided by courtesy of Hajime Okui, DAINEN MATERIAL Co., Ltd.

Manufacturing Process

Dispersion among active material, conductive additive and binder in Mixing Process

Cathode: NCM

Distribution of conductive additive and binder around active material.

Samples provided by courtesy of Hajime Okui, DAINEN MATERIAL Co.,Ltd.

Result

Low capacity

Mixing/

Dispersing

Manufacturing Process

Materials

Upper Middle Lower Whole

Analysis

Manufacturing Process Mixing/ Assembly Forming/ After Coating/ Materials Calendering Cutting filling Dispersing Test/usage Drying /Housing Aging Analysis PSD & porosity after calendering Charge and discharge cycle causes Cathode Original 500cycle crack in active material. 100cycle 200cycle Active material Conductive additive Crack Binder 🌙 **Electrode foil**

Morphological Observation of Cathode Materials Nissan Arc Co., Ltd. (nissan-arc.co.jp)

Result

Lifetime

Manufacturing Process

Electrode cross sections

Inert sample transfer – **Analysis of SEI layer after cycling**

To study the Solid – Electrolyte Interface (SEI) formed during cycling it is often necessary to transfer the sample in vacuum or inert gas before analysis in the SEM.

F Kα1 2

2.5um

Lithium Analysis

2 kV Windowless SDD

Spectrum with Oxford Extreme, windowless EDS detector.

Detector is capable in seeing the Li K α signal, but Li has only few electrons and bonded in an oxide state the probability to emit an X-ray photon is very small. 30 kV EELS

It is now possible to mount EELS (Electron Energy Loss Spectrometer) also in a 30kV SEM/STEM. With EELS it is possible to detect Li and also see its chemical bonding state.

EELS mapping of Li distribution

BF-STEM image

EELS mapping (Li-K)

Instrument: HD2700 STEM, Analysis tool: EV3000, Accel voltage: 200 kV, magnification 60kx, Probe size: 0.5 nm Ip: 400 pA, mapping time: 10 sec.

Active Cathode Material Coating

To study the amount of active cathode material coating that remains after cycling the LiCarbEx method was developed by Tascon. Low Energy Ion Scattering (LEIS) is a chemical

analysis technique with an information depth of 1 atomic layer (~0.3 nm).

Unfortunately, in practice, these cathode materials are covered with a layer of Li₂CO₃ and LiOH that have to be removed before analysis of the coating coverage.

Intensity

Noble gas ions

Energy

LEIS principle

Combined AFM and SEM imaging

Atomic Force Microscopy (AFM) can add functional imaging options to the topography and chemistry contrasts provided by SEM.

Technical cleanliness TecSa

- EA8000 Combined transmission X-ray with uXRF elemental analysis,
 Fast screening for particles down to 20 um size Millions of particles/hour
- SEM with automated EDS for particle analysis
 Up to 30.000 particles/hour particles size down to <1um (but only surface inspection)
- Inline X-ray detection of particles Count and size only, no chemistry <100 m/min, particles >30-50 um (looks through the material)

Our technique portfolio

Electron Microscopy SEM (-STEM) TEM (-STEM) FIB (-SEM) EDS, EBSD, WDS, EELS

 Surface Analysis (TOF-)SIMS LEIS

- XPS
- AFM-in-SEM

Spectral

In-situ tools Mechanical testing Nanoindentation Micromanipulation Electrical probing Heating, cooling, ...

Sample Preparation
Grinding, polishing
Cleaning
Ion milling
Laser micromachining

