

The future of Electrolyte A strategy to achieve high purity and high efficiency

Ilaria De Puri | Senior Sales Engineer | September 28th, 2023

Agenda

- Melt crystallization principle
- About electrolytes, purification challenges and how to overcome them
- Benefits of crystallization: high purity and high efficiency
- Minimize energy consumption in electrolyte production: a practical example

Sulzer: global and agile

We combine reach with responsiveness

We supply mass transfer equipment and technologies to the industry

Electronic chemicals

Sulzer crystallization technologies

Fractional Solvent-free Melt Crystallization

Crystallization 101 – stage

Lithium-Ion Battery: identification of cell material

CO₂-based organic carbonates for Li-ion batteries

Green electrolytes to foster energy decarbonization

Source : seekingalpha.com

Electrolyte solvents

Desired characteristics for electrolyte solvents are:

- ✓ High dielectric constant
- ✓ Low viscosity
- ✓ Inert
- ✓ Non-toxic
- ✓ Liquid at ambient

None of the solvents can meet all the requirements

In most cases, ternary and quaternary systems, such as EC-DEC-DMC, are used.

TABLE 1. Comparison of basic organic, esteric solvents in LIBs; based on melting point (T_n) , boiling point (T_b) , flash point (T_f) , viscosity (η) and dielectric constant (ε) [1].								
Solvent	Ethylene carbonate (EC)	Propylene carbonate (PC)	Dimethyl carbonate (DMC)	Diethyl carbonate (DEC)	Ethylmethyl carbonate (EMC)	Vinylene Carbonate (VC)		
$T_m / \circ \mathbf{C}$	36.4	-48.8	4.6	-74,3	-53	22		
$T_b / \circ \mathbf{C}$	248	242	91	126	110	178		
$T_f / °C$	160	132	18	31				
η / cP	1.9 (40°C)	2.53	0.59 (20°C)	0.75	0.65			
8	89.78	64.92	3.107	2.805	2.958			

[1] From "Electrolytes – Technology Review" in Review on Electrochemical Storage Materials and Technology, AIP Conf. Proc. 1597, 185-195 (2014); doi: 10.1063/1.4878487

Advantages of Crystallization: Enhancing Purity and Efficiency

The **highest purities** is achieved

No solvent recovery

and product is not contaminated with a solvent

Cold process

perfect for heat sensitive products, therefore not generating any by-products

SULZER

Yield + purity

High yield is achieved without compromising purity

Robust process

The crystal growth is controled by "simple" cooling the melt

Low energy consumption

The phase change liquid to solid requires 3 to 6 times less specific energy than liquid to vapor

Reduced Environmental Impact

the first to the the the the the the the

Challenges for electronic grade electrolyte solvents and additives

Traditional distillation High temperature process with decomposition and generation of impurities as by-product	Crystallization Extreme high purity separation			
Can achieve 99.99 wt-%	Can achieve much above >99.999 wt-%			
Because impurities are	EC with less than 10ppm water / glycols			
effecting the performance of the lithium-ion batteries, there is a trend for higher	High purity not compromising yield			
purities.	Low energy consumption			

Pilot testing of EC crystallization

Over performance with 7 stages

The perfect fit: The ideal solution for your unique operation

Achieve balance across key factors

EC purification through hybrid distillation-crystallization method

Finalizing the initial process concept

- Hybrid approach demonstrated
- Final purity higher compared to stand-alone distillation

Hybrid Distillation-Crystallization Calculation

The power of testing

Minimizing the risks and shortening the time to market

Empowering Battery Innovation: The Advantages of Sulzer Crystallization

Thank you for your attention!

SULZER

Your dedicated contacts at Sulzer for Fractional Crystallization:

> Ilaria De Puri Senior Sales Engineer Crystallization

- W +41 52 262 32 58
- M +41 79 893 26 51
- E Ilaria.depuri@sulzer.com

Sulzer Chemtech Ltd Neuwiesenstrasse 15 8401 Winterthur Switzerland.

www.sulzer.com/en/products/separationtechnology/crystallization

Disclaimer

This presentation may contain forward-looking statements, including but not limited to, projections of financial developments, market activities or future performance of products and solutions, containing risks and uncertainties.

These forward-looking statements are subject to change based on known or unknown risks and various other factors, which could cause the actual results or performance to differ materially from the statements made herein.